CHAPTER 5

Resolution Strategies

ONE OF THE DISADVANTAGES of using the resolution rule in an uncon-
strained manner is that it leads to many useless inferences. Some infer-
ences are redundant in that their conclusions can be derived in other ways.
Some inferences are irrelevant in that they do not lead to derivations of the
desired result.

As an example, consider the resolution trace in Figure 5.1. Clauses 9,
11, 14, and 16 are redundant; clauses 10 and 13 are redundant; clauses 12
and 15 are redundant; all these redundancies lead to subsequent redundan-
cies at the next level of deduction. We can remove duplicate clauses and
thereby prevent the propagation of redundant conclusions. However, their
initial generation is an indication of inefficiency in the unconstrained use
of the resolution principle.

This chapter presents a number of strategies for eliminating useless
work. In reading the chapter, it is important to bear in mind that we
are concerned here not with the order in which inferences are done, but
only with the size of a resolution graph and with ways of decreasing that
size by eliminating useless deductions.

5.1 Deletion Strategies

A deletion sirategy is a restriction technique in which clauses with specified
properties are eliminated before they are ever used. Since those clauses

95

5.1 Deletion Strategies 97

A clause that contains a pure literal is useless for the purposes of refutation,
since the literal can never be resolved away. Consequently, we can safely

;‘ remove such a clause. Removing clauses with pure literals defines a deletion
| strategy known as pure-literal elimination.

The database that follows is unsatisfiable. However, in proving this we
can ignore the second and third clauses, since they both contain the pure
: literal S.

{-P,-Q,R}
{-P.s)
{-q,s}
{P}

{a}

{-R}

Note that, if a database contains no pure literals, there is no way we can
derive any clauses with pure literals using resolution. The upshot is that
we do not need to apply the strategy to a database more than once, and
in particular we do not have to check each clause as it is generated.

A tautology is a clause containing a pair of complementary literals.
For example, the clause {P(F(8)),-P(F(R))} is a tautology. The clause
{P(),Q(y) , - »R(2)} also is a tautology, even though it contains
additional literals,

As it turns out, the presence or absence of tautologies in a set of clauses
has no effect on that set’s satisfiability. A satisfiable set of clauses remains
satisfiable, no matter what tautologies we add. An unsatisfiable set of
clauses remains unsatisfiable, even if we remove all tautologies. Therefore,
We can remove tautologies from a database, because we need never use them
in subsequent inferences. The corresponding deletion strategy is called
tautology elimination.

Note that the literals in a clause must be exact complements for
tautology elimination to apply. We cannot remove nonidentical literals,
Jjust because they are complements under unification. For example, the
clauses {~P(A),P(x)}, {P(a)}, and {-P(B)} are unsatisfiable. However, if
Wwe were to remove the first clause, the remaining set would be satisfiable.

In subsumption elimination, the deletion criterion depends on a relation-
ship between two clauses in a database. A clause ® subsumes a clause ¥ if
and only if there exists a substitution o such that ®¢ C ¥. For example,
{P(x),Q(} subsumes {P(),Q(v) ,R(W}, since there is a substitution
{x/A,y/v} that makes the former clause a subset of the later.

If one member in a set of clauses js subsumed by another member, then
the set remaining after eliminating the subsumed clause is satisfiable if and

98 Resolution Strategies

be
nly if the original set is satisfiable. Therefore, subsumed cla;mles _t;:nmd
Oli y'rl.a,l;ed Since the resolution process itself can 'produce tanto og =
- hnsuuming. clauses, we need to check for tautelogies and subsumptions
su 1

we perform resolutions.

5.2 Unit Resolution

A unit resolvent is one in which at least one of l_;he paregt cl'a_msi?: :z :F 11::::
clause: i.e., one containing a single literal. A wunit dec?uct:mn is Lrt : il
all der,ivcd clauses are unit resolvents. A unit refutation is a uni

. ;1:: :‘;In zi};;l:ﬁeog }a: unit refutation, consider the following 1;1‘031’. :E
the first two inferences, unit clauses fr?m the 1n1tla.lljset ar: :zsgg;eed :J{th
binary clauses 1o produce two new u:l:ut claus?s. These ar : e

}110 ﬁy t clause to produce two additional unit clauses. The elemen 5

:hzse r:wo sets of results are then resolved with each other to produce the

contradiction.

. {P.a}

. {~P,R}

. {-Q,R}
. {-Rr} i

i {'!P}
pirs) G

7. {0}
8. {P}

9. {B}
10. {}
11. {R}
12. {}

p i
Note that the proof contains only a sxcllb;et of ll:he xﬁ;ﬁliﬂ uﬁigz :hz
i 1 an can be
n rule. For example, clauses ; . :

zﬂr?cl:lts'ﬁm {Q,R}. However, this conclusion and its descendants are never
enerated, since neither of its parents is a unit .r:la.use. N—

. Inf em‘:e procedures based on unit resolution are easy to un ;
andna:: usually quite efficient. It is worth notiﬁg t};a.t, w}'l:;::i?ti :na:l:::

i i as fewer li
i with a unit clause, the conclusion e
E;;:;’l‘éﬁs This helps to focus the search toward producing the empty
i ves efficiency.)

Chﬁﬁfzftint:g’b};rigf::m procedures based on unit resolution generallﬁ
e not compleu;. For example, the ¢lauses {P_,IJ},_ {_-tP,Q}, {Paﬂ'{:eﬁp
é{“;P -Q} are inconsistent. Using general resolution, it is easy to deri]

HE B

9‘%““‘

l o oon | e b =
oo law

-

b L2
[e B¢ -IE BE |

+ 5.3 Input Resolution 29

empty clause. However, unit resolutjon fails in this case, since none of the
initial propositions is a single literal.

On the other hand, if we restrict our attention to Horn clauses (i.e.,
clauses with at most one positive literal), the situation is much better. In
fact, it can be shown that there is a unit refutation of a set of Horn clauses
if and only if it is unsatisfiable.

5.3 Input Resolution

An input resolvent is one in which at least one of the two parent clauses is
a member of the initial (i.e., input) database. An input deduction is one
in which all derived clauses are input resolvents. An input refutation is an
input deduction of the empty clause {}

As an example, consider clauses 6 and 7 in Figure 5.1. Using uncon-
strained resolution, these clauses can be resolved to produce clause 14.
However, this is not an input resolution, since neither parent is a member
of the initial database.

Note that the resolution of clauses 1 and 2 is an input resolution but
not a unit resolution. On the other hand, the resolution of clauses 6 and 7
is a unit resolution but not an input resolution. Despite differences such
as this one, it can be shown that unit resolution and input resolution are
equivalent in inferential power in that there is a unit refutation from a set
of sentences whenever there is an input refutation and vice versa.

One consequence of this fact is that input resolution is complete for
Horn clauses but incomplete in general. Again, the unsatisfiable set of
propositions {P,Q}, {-P,q}, {P.-0}, and {=P,-q} provides an example
of a deduction on which input resolution fails. An input refutation must
(in particular) have one of the parents of {} be a member of the initial
database. However, to produce the empty clause in this case, we must
resolve either two single literal clauses or two clauses having single-literal
factors. None of the members of the base set meet either of these criteria,
50 there cannot be an input refutation for this set.

5.4 Linear Resolution

Linear resolution (also called ancesiry-filtered resolution) is a slight gener-
alization of input resolution. A linear resolvent is one in which at least one
of the parents is either in the initial database or is an ancestor of the other
parent. A lneer deduction is one in which each derived clause is a linear
resolvent. A linear refutation is a linear deduction of the empty clause {}.

Linear resolution takes its name from the linear shape of the proofs it
generates. A linear deduction starts with a clause in the initial database
(called the top clatse) and produces a linear chain of resolutions such as
that shown in Figure 5.2. Each resolvent after the first one is obtained from

100 Resolution Strategies

{p,0} {~P,0} {p,-q} {-P,-qQ}

{0}
{7}

{-a} /{D}

{}

Figure 5.2 Chain of resolutions in a linear deduction.

the last resolvent {called the near parent) and some other clause (called the
far parent). In linear resolution, the far parent must either be in the initial
database or be an ancestor of the near parent.

Much of the redundancy in unconstrained resolution derives from the
resolution of intermediate conclusions with other intermediate conclusions,
The advantage of linear resolution is that it avoids many useless inferences
by focusing deduction at each point on the ancestors of each clause and on
the elements of the initial database.

Linear resolution is known to be refutation complete. Furthermore, it is
not necessary to try every clause in the initial database as top clause. It can
be shown that, if a set of clauses T is satisfiable and I'U{¢} is unsatisfiable,
then there is & linear refutation with ¢ as top clause. So, if we knows that
a particular set of clauses is consistent, one need not attempt refutations
with the elements of that set as top clauses.

A merge is a resolvent that inherits a literal from each parent such that
this literal is collapsed to a singleton by the most general unifier. The
completeness of linear resolution is preserved even if the ancestors that are
used are limited to merges. Note that, in this example, the first resolvent
(i.e., clause {Q}) is a merge.

5.5 Set of Support Resolution

If we examine resolution traces such as the one shown in Figure 5.1,
we notice that many conclusions come from resolutions between clauses
contained in a portion of the database that we know to be satisfiable. For

5.5 Set of Support Resolution 101

example, in Figure 5.1, the set A is satisfiable, yet many of the conclusions
in the trace are obtained by resolving elements of A with other elements
of A. As it turns out, we can eliminate these resolutions without affecting
the refutation comnpleteness of resolution.

A subset I of a set A is called a set of support for A if and only if
A — T is satisfiable. Given a set of clauses A with set of support I, a set
of support resolvent is one in which at least one parent is selected from I’
or is a descendant of I'. A set of support deduction is one in which each
derived clause is a set of support resolvent. A sef of support refutation is a
set of support deduction of the empty clause {}.

The following trace is a set of support refutation for the example in
Figure 5.1, with the singleton set {-R} as the set of support. The clause
{~R} resolves with {-P,R} and {-Q,R} to produce {~P} and {-Q}. These
then resolve with clause 1 to produce {Q} and {P}, which resolve to produce
the empty clause.

v i {P-,Q} A
2. {'vP,R} A
3. {"Qsﬂ-} A
1. {'lB.} T
5. {‘-nP} 2,4
6. {'1[)} 3,4
7. {qQ} 1,5
8 {p} L6
9. (R} 3,7
10. {} 6, 7
11. {R} 2,8
12.{} 58

Obviously, this strategy would be of little use if there were no easy way
of selecting the set of support. Fortunately, there are several ways this
can be done at negligible expense. For example, in situations where we
are trying to prove conclusions from a consistent database, the natural
choice is to use the clauses derived from the negated goal as the set of
support. This set satisfies the definition as long as the database itself is
truly satisfiable. With this choice of set of support, each resolution must
have a connection to the overall goal, so the procedure can be viewed as
working “backward” from the goal. This is especially useful for databases
in which the number of conclusions possible by working “forward” is larger.
Furthermore, the goal-oriented character of such refutations often makes
them more understandable than refutations using other strategies.

s -

102 Resolution Strategies

5.6 Ordered Resolution

Ordered resolution is a very restrictive resolution strategy in which each
clause is treated as a linearly ordered set. Resolution is permitted only on
the first literal of cach clause; i.e., the literal that is least in the ordering.
The literals in the conclusion preserve the order from their parent clauses
with the literals from the positive parent followed by the literals from the
negative parent (i.e., the onc with the negated atom).

The following trace is an example of an ordered refutation. Clause 5
is the only ordered resolvent of clauses 1 through 4. Clauses 1 and 3 do
not resolve, since the complementary literals are not first in each clause.
Clauses 2 and 4 do not resolve for the same reason, nor do clanses 3 and 4.
Once clause 5 is generated, it resolves with clause 3 to produce clause 6,
which resolves with ¢lause 4 o produce the empty clause,

1. {r.Q} A
2. {'IP,R} a
3. {ﬂQ,R] A
4 {8} T
5. {Q,R} 1, 2
6. (R} 2,5
7. () 4,6

Ordered resolution is extremely efficient. In this case, the empty clause is
produced at the third level of deduction, and the inference space through
that level of deduction includes only three resolvents. By comparison,
general resolution through that level results in 24 resolvents.

Unfortunately, ordered resolution is not refutation complete. However,
if we restrict our atiention to Horn clauses, refutation completeness is
guaranteed. Furthermore, we can get refutation completeness in the general
case by considering resolvents in which the remaining literals from the
positive parent follow the remaining literals from the negative parent, as
well as the other way around.

5.7 Directed Resolution

Directed resolution is the use of ordered resolution in an important but
restricted set of deductions. In directed resolution, the query takes the
form of & conjunction of positive literals, and the database consists entirely
of directed clauses. A directed clause is a Horn clause in which the positive
literal occurs either at the beginning or the end of the clause. The goal
is to find bindings for the variables so that the conjunction resulting from
the substitution of these bindings is provable from the database.

LEL L Byrs ha g e e nrr

~21r 338

5.7 Directed Resolution 103

In looking at directed resolution, we can use a bit of syntactic sugar.
Since all the clauses are directional, we can write them in infiz form. We
write clauses with the positive literal at the end using the = operator.
We write clauses in which the positive literal is at the beginning using the
reverse implication operator <, We let the literal in a positive unit clause
represent the clause as a whole. We write the negative literals in clauses
without positive literals as the antecedents of either implication operator.

SRS TR) TP e
{1, ., gn} o e @1, 80
{~¢1, .- s bnt o 1 B

{ﬂqbl:"'x-‘gb"}ﬁq. qbls"'aén

The distinguishing feature of directed resolution is the directionality of
the clauses in the database. Some clauges give rise to forward resolution,
in which positive conclusions are derived from positive data. Other clauses
give rise to backward resolution, in which negative clauscs are derived from
other negative clauses. As suggested by the preceding equivalences, the
directionality of a clause is deterinined by the position of the positive literal
in the clause.

A forward clause is one in which the positive literal comes at the end. In
directed resolution, forward clauses give rise to forward resolution. To see
why this is so, consider the following proof. Using ordered resolution on
the first two clauses leads to the conclusion P(A), and then this conclusion
is resolved with the negative unit to derive the empty clause. Putting
the positive literal at the end makes it possible to work forward to the
positive intermediate conclusion (clause 4), but makes it impossible to work
backward from the negative clause (clause 3).

1. {~N(x),P(x)} M(z) = P(x)

2. {M(A)} M(A)

3. {~P(=)} P(z) =»
4. {P(A)} P(A)

5 {} {}

Symmetrically, if the positive literal is put at the front of a clause,
the clause is backward, If we rewrite the previous clauses in this way,
we get the opposite behavior. In the following proof, the negative clause
is resolved with the first clause to produce the intermediate negative
conclusion {-M(z)}, then this result is resolved with the second clause
to derive the cmpty clause.

1. {P(x),"M(x)} P(x) <« M(x)

2. {H(A)} M(A)
3. {-P(z)) < P(2)

104 Hesolution Strategles
4. {-M(=z)} < K=z
5 {} <«

By making some clauses forward and others backward, we can get a
mixture of forward and backward resolution. As an example, consider the
following proof. The positive data first resolve with forward clause 2 to
produce more positive results. These results then resolve with clause 1
to produce some intermediate results. These results resolve with backward
clause 3 to produce two subgoals involving N. One of these succeeds, leading
to the positive result {R(B)}. This theu resolves with clause 7 to produce
the empty clause.

1. {-P(x),=Q{x) ,R(x)} P(x).Q{(z) = R{x)
2. {-M{x),P(x)} M(x) = P(x)
3. {Q(x), N(x)} Qix) « Nz
4. (M)} M(4)

5. {M(B)} H(B)

6. {N(B)} N(B)

7. {-R(z)} R(z) =

8. {P(A)} P(R)

9. {P(B)} P(B)

10. {~q(a),R(A)} R(A) = R(A)
11. {-Q¢(B>,R(B}} Q(B) = R(B)
12. {-N(4),R{A)} N{a) = R(&)
13. {-N(B),R(B)} N(B} = R(B)
14. {R(B)} R(B)

15. {} =

The possibility of controlling the direction of resolution by positioning
the paositive literal at one or the other end of a clause raises the question of
which direction is more efficient. For the purpose of comparison, consider
the following set of sentences.

Insect(x) = Animal(x)
Mammal{x) = Animal{x)
Ant(x) = Insect{(x)
Bee(x) =» Insect(x)
Spider(xz) = Insect(x)

Lion(x) = Mammal{x)

5.7 Directed Resolution 105

Tiger(x) = Mammal(x)
Zebra(x) = Mammal (x)

Assuming that Zeke is a zebra, is Zeke an animal? The following proof
shows that the search space in this case is quite small.

1. {Zebra(Zeke)}
2. {~Animal(Zeke)}

3. {Mammal (Zeke)}

4. {Animal (Zeke))

5. {}

Unfortunately, things are not always so pleasant. As an example,
consider the following database of information about zebras. Zebras are
mammals, striped, and medium in size. Mammals are animals and warm-
blooded. Striped things are nonsolid and nonspotted. Things of medium
size are neither small nor large.

Zebra(x) = Mammal(x)
Zebra(x) = Striped(x)
Zebra(x) = Medium(x)
Mammal(x) = Animal(x)
Mammal(x) => Warm(x)
Striped(x) = Nonsolid(x)
Striped(x) = Nonspotted(x)
Medium{x) = Nonsmall(x)

Hedium{x) => Nomlarge(x)

The following proof shows that the search space in this case is somewhat
larger than in the previous example. The reason is that we can derive more
than one conclusion from each clause than we manage to derive.

1. {Zebra(Zeke)}
2. {-Nonlarge(Zeke)}

3, {Mammal (Zeke)}
4. {Striped{Zeke)}

106 Resolution Strategies

5. {Medium(Zeke}}

6. {Animal{(Zeke)}

7. {Warm(Zeke)}

8. {Nonsolid(Zeke)}
9. {Nonstriped(Zeke)}
10. {Nonsmall(Zeke)}
12. {Nonlarge(Zeke)}

13. {}

Now consider what would happen if we were to reverse the direction of
the clauses, as follows.

Mammal(x) < Zebra(x)
Striped(x) <+ Zebra(x)
Medium(x) < Zebra(x)
Animal(x) <= Mammal(x)
Warm(x) ¢ Mammal{x)
Nonsolid(x) < Striped(x)
Nonspotted(x) < Striped(x)
Nonsmall(x)} <+ Medium(x)
Nonlarge(x) < Medium(x)

The following proof shows that the search space of bac.kward resolution
in this case is mueh smaller than that for forward resolution.

1. {Zebra(Zeke)}
2. {~Nonlarge(Zeke)}

3. {~Medium(Zeke) }

4. {~Zebra(Zeke}}

5. {}

Unfortunately, like forward resolution, backward rfasolution has its
drawbacks. As an example, consider the backward version of the clauses

in the animal problem.

Animal(x) < Insect(x)

Animal(x) < Mammal(x)

a5 aE R

rrraigy b

2
T

5.7 Directed Resolution 107

Insect(x) <= Ant(x)
Insact(x) <= Bee(x)
Ingect (x) < Spider(x)
Mammal(x)} < Lion{x)
Mammal(x) <= Tiger(x)

Mammal (x) < Zebra(x)

The following proof shows that the search space for the backward
direction is much larger than it is for the forward direction.

. {Zebra(Zeke)}
. {~Animal(Zeke)}

. {+Insect(Zeke)}
. {~Mammal (Zeke) }

. {~Ant(Zeke)}
. {~Bee(Zeke)}
. {"Spider(Zeke)}
. {-Lion(Zeke)}
. {~Tiger(Zeke)}
{~Zebra(Zeke)}

{}

S wee oo W Qo B -

—

=
B

The fact is that forward resolution is best for some clause sets, and
backward resolution is best for others. To determine which is best for
which, we need to look at the branching factor of the clauses. In the
preceding exampies, the search space branches backward in the animal
problem and forward in the zebra problem. Consequently, we should use
forward resolution in the animal problem and backward resolution in the
zebra problem.

Of course, things are not always this simple. Sometimes, it is best
to use some clauses in the forward direction and others in the backward
direction; deciding which clauses to use in which direction to get optimal
performance is a computationally difficult problem. The problem can be
solved in polynomial time, if we restrict our attention to coherent databases;
i.e., those in which all clauses that can be used to prove a literal in the
antecedent of a forward clause are themselves forward clauses. In general,
however, the problem is NP-complete.

108 Resolution Strategies

5.8 Sequential Constraint Satisfaction

Sequential constraint salisfaction is the use of ordered resolttion in the
solution of another restricted but important class of fill-in-the-blank
questions. Like directed resolution, the query is posed as a conjunction
of positive literals, containing some number of variables. However, unlike
directed resolution, the database consists entirely of positive ground
literals. The task is ta find bindings for the variables such that, after
substitution into the query, each of the resulting conjuncts is identical to a
literal in the database.

As an example, consider the following database. Art and Ann are the
parents of Jon; Bob and Bea are the parents of Kim; and Cap and Coe are
the parents of Lem. Ann and Cap are carpenters; Jon and Kim are U.S.
senators.

P(Art,Jon) Carpenter (Ann) Senator (Jon)
P(Ann,Jon) Carpenter{Cap) Senator(Kim)
P(Bob,Kim)
P(Bea,Kim)
P{Cap,Lem)
P(Coe,Lem)

The following conjunction is a typical query for a database of this sort.

We are looking for bindings for the variables x and y such that x is the
parent of y, X is a carpenter, and y is a senator.

P(x,y) A Carpenter(x) A Semator(y)

To use resolution on this problem, we need to negate the query, to
convert to clausal form, and to add an appropriate answer literal. This
results in the following clause:

{~P(x,y),~Carpenter(x),~Senator(y),Ans(x,y)}

We then use ordered resolution to derive an answer. The following
sequence of deductions shows a trace of this strategy in solving this query
using the preceding data.

L. {-P(x,y) ,~Carpenter(x),-Senator(y),Ans(x,y}}

2. {~Garpenter(Art),-Senator({Jon),Ans{Art ,Jon) }
3. {-Carpenter(Ann),~Senator(Jon),Ans{Ann, Jon)}
4. {-Carpenter(Bob),~Senator(Kim),Ans(Bob,Kim)}

B e s anssesesnn

IR B 4 11 YRR 0 e b g B

5.8 Sequential Constraint Satisfaction 109

5. {~Carpenter(Bea) ,-Senator(Kim) »Ans (Bea,Kim) }
6. {~Carpenter(Cap),~Senator(Lem) ,Ans(Cap,Lem) }
7. {~Carpenter(Coe) ,~Senator(Lem) , Ans (Cae Lem}}

8. {-Senator(Jon}, Ans(Arm,Jon)
9. {-Senator (Lem),Ans(Cap,Lem)

10. {Ans(Ann,Jon)}

From the standpoint of efficiency, one of the key questions in sequential
constraint satisfaction is the order of the literals in the query. Although
there is some search involved in the preceding example, it is not great. By
comparison, it is interesting to consider what happens with a somewhat
larger database and a slightly different ordering of the literals in the query.

To be specific, consider a census database with the following properties.
There are 100 U.S. senators; so, if the database is complete and nonre-
dundant, there are 100 solutions to yueries of the form Senator(v), where
¥ is a variable. Similarly, there are several hundred thousand carpenters
and, therefore, several hundred thousand solutions to gueries of the form
Carpenter(r). There are several hundred million parent-child pairs and,
therefore, several hundred million solutions to queries of the form P(u,v)
involving two variables, However, there are only two solutions to queries
of the form P(v,v), where v is a variable and 4 i3 a constant, since each
person has only two parents. Similarly, therc are only a few solutions to
queries of the form P{(%,r), since each person has at most a few children.
We indicate the sizes of these solution sets as follows, where the notation
|lQ(x)]| is used to denotc the number of instances of Q(x) in the database.

|[Senator ()|} = 100
||Carpenter (+) || =~ 105
[IPCpey) || = 108

¢, 1 |} =2

(IPCy,)|~ 3

Consider the difficulty of answering the preceding query with this expanded
dalabase. As before, working on the literals in the order given results in an
enumeration of all parent—child pairs, except in this case the search space
includes several hundred million possibilities.

A much better way to answer the query is to reorder the literals as shown
below. Since there are only 100 senators and only two parents for each
senator, this ordering limits the search space to at most 200 possibilities,

Senator(y} A P(x,y) A Carpenter(x)

110 Resolution Strategies

This example suggests a useful heuristic for sequential constraint
satisfaction, known as the cheapest first rule, which states that one should
process the literals in a query in order of increasing solution-set size.
Unfortunately, the rule does not always produce the optimal ordering. As
an example, consider the following problem.

P(x) A Q{y) A R(x,y)

Assume the database has the characteristics shown below. The
symbols 1 and v here refer to arbitrary variables, and 7 is a constant.

|IP()|| = 1000
IQ€) || = 2000
IR, || = 100,000
[IRCy,)| = 100
|[RCet,)] = 10

In this case, P(x) is the literal with the smallest solution set; therefore,
using the cheapest first rule, we enumerate its solutions first, a total of 1000
possibilities, Next we compare the set sizes of the remaining two literals
for the case where x is known. There are 2000 solutions to the q literals
but only 100 solutions to the R literal, if x is known. So the R literal is
processed next, leading to a total search space of 160,000.

The problem is that there is a better ordering. Working first on Q(y)
produces an initial search space of 2000 possibilities. However, given a
value for y, there are only 10 solutions for the R literal, leading to a search
space of only 20,000, a factor of 5 smaller than the ordering suggested by
the cheapest first rule.

One way of guaranteeing the optimal ordering for a set of literals is to
search through all possible orderings. For each ordering, we can compute
the expected cost. Then, we can compare orderings and select the one that
is cheapest.

The following equations show the cost estimates for the six orderings of
the literals in the preceding problem. From these estimates, it is easy to
gee that it is best to process the § literal first, followed by R, and then P,

{|P(x),0¢y) ,R{x, ¥} = 2,000,000
{|P(x),R{x,y) Q) |} = 100,000
lQCy? ,P¢x) ,R(x,¥)|] = 2,000,000
lACyY JR(x,¥) ,P(x)]| = 20,000

5.8 Sequential Constraint Satisfaction 111

j{R(x,y),P(x),Q(y)|] = 100,000
JIR(x,¥),QCy) ,B(x)|| = 100,000

The problem with enumerating and comparing all possible orderings is
inefficiency. For a set of n literals, there are n! possible orderings. Although
there are only six possible orderings for three literals, the number jumps
to over 40,000 for eight literals.

Fortunately, there are some results that help in cutting down the
search necessary to find the optimal ordering. The adjacency theorem
(Theorem 5.1) is an example. .

Given a set of literals !y,...,1,, we define the situated literal ¥ to be
the literal obtained by substituting inte I; ground terms for the variables
in Iy,...,1;. For example, given the query P{x) A Q(x,y) A R(x.y), the
situated literal P(x}° is just P(x), The situated literal Q(x,y)" is Q(x,y),
but the situated literal Q(x, y]1 is Q{v,y), where v is a ground term.
The situated literal R(x,y)° is R(x,y); R(x,y)" is R(7,y); and R(x,y)
is R(y1,72).

THEOREM 5.1 (Adjacency Theorem) If l;,...,l, is an optimal kt-
eral ordering, then ||I77|| < [|51] for all i between 1 andn — 1.

This theorem supports our intuitions about literal ordering in the simple
cases covered by the following corollaries.

COROLLARY 5.1 The most ezpensive conjunci should never be done
first.

COROLLARY 5.2 Given a ronjunct sequence of length iwo, the less
expensive conjunct should always be done first.

The upshot of the adjacency theorem is that we need not search through
all the possible orderings to find one guaranteed to be aptimal. For
example, in the preceding problem, we need look at only two orderings. In
this case, we can eliminate two-thirds of the possibilities. As the number
of literals grows, the savings becomes more substantial. A short analysis
shows that the number of possible orderings that must be considered is

112 Resolution Strategies

Table 5.1 Reduction of search space by adjacency restrictlon

n G{n,0) n!
1 1 1
2 1 2
3 2 B
4 5 24
5 16 120
6 61 720
7 272 5040
8 1385 40,320
9 7936 362,880
10 50521 3,628,800

bounded by G(n,0), where n is the number of literals and @ is defined
recursively, as shown.

0 fn=d
Gn,d)=4{ 1 ifn=1,d=0
Brd1G(n ~ 1,i) otherwise

Here, d can be thought of as the number of remaining literals that cannot
appear as the next literal because of the adjacency restriction. Note that, if
the second argument to G is ignored, the formula reduces to nl, as expected.

Table 5.1 shows some of the values for this function by comparison to
the total number of orderings of n literals. For three literals, the adjacency
restriction reduces the search space to only two orderings, For eight literals,
the space is reduced from over 40,000 possibilities to fewer than 1400.

The adjacency theorem is an example of a reduction theorem. It reduces
the space of possible orderings that must be searched to find an optimal
ordering, and thereby makes the process of optimization more efficient.

5.9 Bibliographical and Historical Remarks

Many restriction strategies for resolution refutations are discussed in detail
by Loveland [Loveland 1978], by Chang and Lee [Chang 1973], and by Wos
et al. [Wos 1984a).

Ordered resolution is similar to lock resolution, which was originally
proposed by Boyer [Boyer 1971}, and to SL-resolution, which was explored
by Kowalski [Kowalski 1971]. Depth-first backward resolution is the
strategy used in PROLOG [Clocksin 1981, Sterling 1986], as well as in

i
g

5.9 Exercises 113

numerous expert systems. Moore [Moore 1975) was one of the first people
to point out the efficiencies to be gained by choosing the appropriate
direction for reasoning. Treitel and Genesereth explored the problem
of automatically determining optimal directionality [Treitel 1987). The
adjacency theorem for optimal literal ordering was proved by Smith and
Genesereth [Smith 1985). A variety of additional strategies for resolution
are discussed in [Kowalski 1970, 1971, 1972, Minker 1973, 1979, Smith
1986).

Although not discussed in this boak, it is often helpful to precompitte
all the possible resolutions that can be performed among a set of clauses
and to store the results in a connection graph. The actual search for a
refutation can then be described in terms of operations on this graph. The
use of conncction graphs was first proposed by Kowalski {Kowalski 1975).
Other authors who have used various forms of connection graphs are Sickel
[Sickel 1976], Chang and Slagle [Chang 1979a, 1979b], and Stickel [Stickel
1982].

Several extremely efficient resolution refutation systems have been
written that are able to solve large, nontrivial reasoning problems, including
some open problems in mathematics [Winker 1982, Wos 1984b). A typical
challenge problem for testing and illustrating the features of theorem-
proving programs is the so-called Schubert steamroller problem [Stickel
1986).

Several other nonresolution theorem-proving systems also have been de-
veloped. Examples include those of Bledsoe [Bledsoe 1977, Ballantyne
1977], and of Boyer and Moore [Boyer 1979]. Shankar used the Boyer—
Moore theorem prover in verifying steps in the proof of Gédel's incom-
pleteness theorem [Shankar 19886).

Exercises

1. Deletion strategies. Consider the problem of showing that the clauses
{P,Q}, {~P,0}, {P,-Q}, and {~P,-Q} are not simultaneously satisfiable.

a. Bhow a resolution trace for this problem using tautology elimination.
b. Show a resolution trace for this problem using subsumption.
2. Linear resolution. Use linear resolution to show that the following set
of clauses is unsatisfiable.
{r,q}
{Q.r}
{r,W}

114 Resolution Strategies

{ﬂR,ﬂP}
{-%,-q}
{-Q,-&}

3. Combination strategies. We know that unit resolution is not complete,
but there are some problems for which it is able to derive the empty
clause, If we combine unit resolution with ordered resolution, does
this make it impossible to prove some things that are provable by unit
resolution atone? If so, give an example. If not, prove that there is no
difference.

4. Combination strategies. QGive a counterexample to show that the
combination of ordered resolution and set of support resolution is not
complete.

5. Map coloring. Cousider the problem of coloring the following map,
using only four colors, such that ne two adjacent regions share the same
color.

This problem can be set up as a constraint satisfaction preblem. Write
down the database and the query.

g R T

CHAPTER 6

Nonmonotonic Reasoning

WE HAVE ALREADY SEEN some indication of the power of the first-order
predicate calculus as a language for expressing declarative knowledge in Al
systems. We can use the predicate caleulus to express any conceptualization
based on objects and their relations in a domain of discourse. Given what
we have presented so far, we might imagine that a typical Al system using
first-order logic would work somewhat as follows. Information that the
system has about its domain is expressed as a finite set A of first-order
formulas. We call A the database or base set of beliefs of the system. To
answer queries or to take appropriate actions, the system typically will
have to decide whether or not some formula ¢ is logically entailed by
ita beliefs. We can imagine that the system will make this decision by
performing logical deductions on A, perhaps by using resolution on the
clause form of AA~¢. (Our notation is simplified by lesting A also stand
for the conjunction of the formulas in the set A.)

Even though this model is quite useful for & variety of tasks requiring
knowledge sbout a domain, it has major limitations. The three most
important ones are:

'(1) Language {probably eny language) cannot capture all that we want
to say about the world. A finite set of sentences can never be more
than an approximate description of things as they really are. Any
general rule that we might care to frame is subject to an unlimited
number of exceptions and gualifications. If we are going to use
language to describe the worid, we will have to use it in a way
that is robust in the face of an ever-expanding set of more highly
articulated statements.

115

