Chapter 3 ~ " %

Building models

Bayesian networks create a very efficient language for building models of domains
with inherent uncertainty. However, as can be seen from the calculations in Sec-
tion 2.4, it is a tedious job to perform evidence transmission even for very simple
Bayesian networks. Fortunately, software tools which can do the calculation job for
us are available. Several commercial products exist containing both an editor for
Bayesian networks and a runtime module which takes care of evidence transmission.
In the rest of this book we assume that the reader has access to the HUGIN system
provided by the diskette attached to the book, or to any other Bayesian network
programming environment.

Therefore we can start by concentrating on how to use Bayesian networks in
model building and defer a presentation of the methods for probability updating to
Chapter 4.

In Section 3.1 we examine, through three examples, the considerations when de-
termining the structure of a Bayesian network model. Section 3.2 gives examples
of estimation of the conditional probabilities. The examples cover theoretically
well-founded probabilities as well as probabilities taken from data bases and purely
subjective estimates. Section 3.3 gives several modelling tricks to use when the
amount of numbers to acquire is overwhelming. In Section 3.4 we touch upon
methods for learning structure from a data base and for adapting the conditional
probabilities to incoming cases.

Finally we describe the system Child.

3.1 Catching the structure

3.1.1 Family out?

When I go home at night, [ want to know if my family is home before
I try the doors. (Perhaps the most convenient door to enter is double
locked when nobody is home.) Now, often when my wife leaves the
house she turns on an outdoor light. However, she sometimes turns
on this light if she is expecting a guest. Also, we have a dog. When
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34 BUILDING MODELS

i nobody is home, the dog is put in the back yard. The same is true if
1 the dog has bowel trouble. Finally, if the dog is in the back yard, I will

probably hear her barking, but sometimes I can be confused by other
dogs barking.

The first thing to have in mind when organizing a Bayesian model for a decision
support system is that its purpose is to give estimates of certainties for events which
are not observable (or only observable at an unacceptable cost). So, the primary
task in model building is to identify these events. We call them hypothesis events.

Here we have two hypothesis events, namely family at home and family out.

Now, the hypothesis events have to be organized into a set of variables. A variable
incorporates an exhaustive set of mutually exclusive events. That is, for each variable
precisely one of its events is true.

Here it is very easy to organize the events into one variable F-out? with states y
and n.

The next thing to have in mind is that in order to come up with a certainty
estimate, we should provide some information channels. So, the task is to identify
the types of achievable information which may reveal something about the state
of some hypothesis variable. This is also done by establishing certain variables,
: information variables, such that a piece of information corresponds to a statement
e about the state of an information variable. Typically, the information will be a

statement that a particular information variable is in a particular state; but also more

soft statements are allowed. |

Here, the information variables are L-on? (light on) with states y and n and

- H-bark? (hear bark) also with states y and n.

Now it i1s time to consider the causal structure between the variables. At this
stage we need not worry about how information is transmitted through the network.
The only thing to worry about is which events have a direct causal impact on other
events.

In this example it is clear that F-out? has an impact on L-on? as well as on
H-bark?, and that there 1s no causal relation between H-bark? and L-on?.
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Figure 3.1 A causal structure for family-out?
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We may stop with the model in Figure 3.1 and start specifying the probabilities
P(F-out), P(H-bark? | F-out?) and P(L-on? | F-out?). We will defer the remain-
ing treatment of this example to the section on specification of the probabilities
(Section 3.2.4).
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Figure 3.2 An oversimplified structure for the poker game.
The variables are FC (first change), SC (second change), and
OH (opponent’s hand).

3.1.2 A simplified poker game

In this poker game each player receives three cards and is allowed
two rounds of changing cards. In the first round you may discard any
number of cards from your hand and get replacements from the pack of
cards. In the second round you may discard at most two cards. After
the two rounds of card changing, I am interested in an estimate of my
opponent’s hand.

The hypothesis events are the various types of hands in the game. They may be
classified in the following way (in increasing rank): nothing special, 1 ace, 2 of
the same value, 2 aces, flush (3 of a suit), straight (3 of consecutive value), 3 of
the same value, straight flush. Ambiguities are resolved according to rank. This
is of course a simplification, but you often have to do so when modelling. The
hypothesis events are collected into one hypothesis variable OH (opponent’s hand)
with the classes given above as states. -

The only information to acquire is the number of cards the player discards in the
two rounds. (By saying so, we again are making an approximation. The information
on the cards you have seen is relevant for your opponent’s hand. If, for example,
you have seen three aces then he cannot have two aces.)

So, the information variables are FC (first change) with states 0, 1, 2, 3 and SC
(second change) with states 0, 1, 2.7

A causa! structure for the information variables and the hypothesis variable could
be as in Figure 3.2,

However, this structure will leave us with no clue as to how to specify the prob-
abilities. ,
~ What we need are variables describing the opponent’s hands in the process: the
initial hand OHO and the hand OH! after the first change of cards. The causal
structure will then be as in Figure 3.3.

To determine the states of OHO and OHI we have to produce a classification
which is relevant for the determination of the states of the children (FC and OH/,
say). We may let OHO and OH! have the following states: nothing special, I ace, 2
of consecutive value, 2 of a suit, 2 of the same value, 2 of a suit and 2 of consecutive
value, 2 of a suit and 2 of the same value, 2 of consecutive value and 2 of the same
value, flush, straight, 3 of the same value, straight flush.
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Figure 3.3 A structure for the poker game. The two mediating
variables OHO and OHI are introduced. OH2 is the vartable for
my opponent’s final hand.

We defer further discussion of the classification to the section on specifying the
probabilities (Section 3.2.2).

Variables in a model which are neither hypothesis variables nor information vari-
ables are called mediating variables. The decision on how to incorporate mediating
variables is mainly a question of convenience. Usually mediating variables will ease -
the acquisition of conditional probabilities and thereby also increase the precision of
the model. On the other hand there is a risk of increasing the complexity to a level
which may jeopardize performance.

Another point is that it may happen that two variables — A and B — are dependent,
but this dependence does not factor through any of the other variables. On the other
hand, there is no obvious causal direction on the dependence. This should be taken
as an indication that a mediating variable should be introduced as a parent of A and
B. The next example illustrates this point.

3.1.3 Insemination

Six weeks after insemination of a cow there are three tests for the
result: blood test (BT), urine test (UT) and scanning (Sc). The results
of the blood test and the urine test are mediated through the hormonal
state (Ho) which is affected by a possible pregnancy (Pr). (This is a
constructed example.)

A model will be like the one shown in Figure 3.4

For both the blood test and the urine test there is a risk that a pregnancy does
not show after six weeks. This is due to the fact that the change in the hormonal
state may be too weak. Therefore, given pregnancy, the variables BT and UT are
dependent.
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Figure 3.4 A model for test of pregnancy (Pr}. Both the blood
test (BT) and the urine test (UT) measure the hormonal state
(Ho).

If we did not include the mediating variable, the model would be the one shown

in Figure 3.5.

Figure 3.5 The pregnancy model without the hormonal state
variable.

This model assumes the two tests to be independent given Pr.

If the model in Figure 3.5 is used for diagnosing a possible pregnancy, a negative
outcome of both the blood test and the urine test will be counted as two independent
pieces of evidence and therefore overestimate the probability for the insemination
to have failed. (See Exercise 3.1.)

3.1.4 Simple Bayes models

The first Bayesian diagnostic systems were constructed through the following pro-
cedure.

— Let the possible diseases be collected into one hypothesis variable H with
prior probability P(H).

— For all information variables I, acquire the conditional probability
P(I | H) (the likelihood of H given I).

— For any set of findings f;,..., f, on the variables I),..., I, calculate the
product L(H | fi,..., fu) = P(fi | HYP(f2 | H)--- - P(f, | H). This prod-
uct is called the likelihood for H given fi, ..., f,. The posterior probability
for H is calculated as wP(H)L(H | fi,..., f»), where i is a normalization
constant.

The calculations above reflect the simple model shown in Figure 3.6. (See Exer-
cise 3.2.)
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Figure 3.6 A simple Bayes model.

The model assumes that the information variables are independent given the hy-
pothesis variable. As can be seen from the insemination example, the assumption
need not hold, and if the model is used anyway, the conclusions may be misleading.

3.1.5 Causality

In the examples presented in the previous section there was no problem in estab-
lishing the links and their direction. However, you cannot expect this part of the
modelling to always go smoothly.

First of all, causal relations are not always obvious — recall the debate on whether
or not smoking causes lung cancer, or whether a person’s sex has an impact on their
abilities in the technical sciences. Furthermore, causality is not a well understood
concept: is a causal relation a property of the real world, or, rather, is it a concept in
our minds helping us to organize our perception of the world? We shall, however,
not go into the scientific debate on causality and how to discover causal relations.

One point only. Causality has to do with actions where the state of the world
is changed: you may, for example, find yourself confronted with two correlated
variables A and B, but you cannot determine a direction. If you observe the state of
A you will change your belief of B, and vice versa. A good test is then to imagine
that some outside agent fixes the state of A. If this does not make you change the
belief of B, then A is not a cause of B.

On the other hand, if this imagined test indicates a causal arrow in both directions,
then you should look for an event which has a causal impact on both A and B. If
C is such a candidate, then check whether A and B become independent given C.

3.2 Determining the conditional probabilities

The basis for the conditional probabilities in a Bayesian network can have different
epistemological status ranging from weli-founded theory over frequencies in a data
base to subjective estimates. We shall give examples of each type.

3.2.1 Stud farm

The stallion Brian has sired Dorothy with the mare Ann and sired Eric
with the mare Cecily. Dorothy and Fred are the parents of Henry, and
Eric has sired Irene with Gwenn. Ann is the mother of both Fred and
Gwenn, but their fathers are in no way related. The colt John with the
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Table 3.1 P(child | father, mother) for genetic in-
heritance. The numbers (&, 8, y) are the child’s prob-
abilities for (aa, aA, AA).

aa aA AA
aa (1,0,0) (0.5, 0.5, 0) 0,10
aA (05,0500 (0.25 05, 025) (0,05, 05)
AA (0,1,0 (0, 0.5, 0.5) 0,0, 1)

parents Henry and Irene has been born recently; unfortunately, it turns
out that John suffers from a life threatening hereditary disease carried
by a recessive gene. The disease is so serious that John is displaced
instantly, and as the stud farm wants the gene out of production, Henry
and Irene are taken out of breeding. What are the probabilities for the
remaining horses to be carriers of the unwanted gene?

The geneological structure for the horses is given in Figure 3.7.

Figure 3.7 Geneological structure for the horses in the stud
farm.

The only information variable is John. Before the information on John is acquired
he may have three genotypes: he may be sick (aa), a carrier (aA), or he may be
pure (AA). The hypothesis events arc the genotypes of all other horses in the stud
farm.

The conditional probabilities for inheritance are both empirically and theoretically
well studied, and the probabilities are as shown in Table 3.1. The inheritance tables
could be as Table 3.1. However, for all horses except John we have additional
knowledge. Since they are in production they cannot be of type aa. A way to
incorporate this would be to build a Bayesian network where all inheritance is
modelled in the same way and afterwards enter the findings that all horses but John
are not aa. It is also possible to calculate the conditional probabilities directly. If
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Figure 3.8 The stud farm model with initial probabilities.
(HUGIN dump.)

we first consider inheritance from parents which may only be of genotype aA or
AA, we get Table 3.2.

Table 3.2  P(child | father, mother)
when the parents are not sick.

. aA AA
) aA (0.25,05,0.25) (0,05, 0.5)
AA (0,05, 0.5) (0, 0, 1)

The table for John 1s the same as in Table 3.2. For the other horses we know that aa
is impossible. This is taken care of by removing the state aa from the distribution
and normalizing the remaining distribution. For example P(child | aA,aA) =
(0.25, 0.5, 0.25), but since aa is impossible we get the distribution (0, 0.5, 0.25)
which is normalized to (0, 0.67, 0.33). The final result is shown in Table 3.3.

In order to deal with Fred and Gwenn we introduce the two unknown fathers, I
and K, as mediating variables and assume that they are not sick. For the horses at
the top of the network we shall specify prior probabilities. This will be an estimate
of the frequency of the unwanted gene, and there is no theoretical way to come up
with it. Let us assume that the frequency is so that the prior belief of a horse being
a carrier 1s 0.01.
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Table 3.3 P(child | father, mother)
with aa removed.

alA AA
aA (0.67, 0.33) (0.5, 0.5)
AA (0.5, 0.5) 0, 1)
L Ann Brian Cecily K
Carr 200 Carr 62.4 mmmmm Carr 38.] mm Car 191 Carr  1.8)
Pure 98.0—l Pure 37.0mmm Pure 61.9 mmmm Pure 98.l_| Pure 98.2#
Fred Dorothy Eric Gwenn
Carr 44,8 mumm Carr 80.5 eneummm Carr 33.6 mmm Carr 62.5 mmmm
Pure 55.2 mmmm Purc 19.508 Pure 61.4 Pure 37.50m8
Henty ] Irene ]

Carr 100.0 Carr 100.0
Pure * Pure *

John

Carr
Pure

Figure 3.9  Stud farm probabilities given that John is sick.
(HUGIN dump.)

In Figure 3.8 the final model with initial probabilities is shown, Figure 3.9 gives
the posterior probabilities given John is aa, and in Figure 3.10 you can see the
posterior probabilities with the prior beliefs at the top changed to 0.0001. Note that
the sensitivity to the prior beliefs is very small for the horses where the posterior
probability for carrier is well beyond zero, e.g. Ann and Brian.

3.2.2 Conditional probabilities for the poker game

In the stud farm example the conditional probabilities were mainly established
through theoretical considerations. This should also be attempted for the model
of the poker game developed in Section 3.1.2, but it cannot be carried through
entirely.

Consider, for example, P(FC | OHO). It is not possible to give probabilities
which are valid for any opponent. It is heavily dependent on the opponent’s insight,
psychology and game strategies. We shall assume the following strategy.
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L Ann Brian Cecily K
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Figure 3.10 Stud farm probabilities with prior probabilities for
top variables changed to (0.0001, 0.9999). (HUGIN dump.)

If nothing special (no), then change 3.
If 1 ace (/ a), then keep the ace.

If 2 of consecutive value (2 cons) or 2 of a suit (2 s) or 2 of the same value
(2 v) then discard the third card.

If 2 of a suit and 2 of consecutive value, then keep 2 of a suit. (This strategy
could be substituted by a random strategy for either keeping 2 of a suit or 2
of consecutive value.)

If 2 of a suit and 2 of the same value or 2 of consecutive value and 2 of the
same value, then keep the 2 of the same value,.

If flush (A1), straight (s7), 3 of the same value (3 v) or straight flush (5ff), then
keep it. |

Based on the strategy above, a logical link between FC and OHO is established.
Note that the strategy makes the states for combined hands redundant. They play
no role, and therefore we remove them.

The strategy for P(SC | OH1) is the same except that in the case of no, only 2

cards are discarded.

P

The remaining probabilities to specify are P(OHO),P{OHI | OHO, FC) and
(OH2 | OH1,SC).
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Table 3.4 P(OHI | OHO, FC) for the non-obvious parent configurations.

(OHO, FC)

(no, 3) ({a?2) (2 cons, 1) (25, 1) 2v, 1)
no 0.1583 0 0 0 0
la 0.0534 0.1814 0 0 0
2 cons 0.0635 0.0681 0.3470 0 0
2s 0.4659 0.4796 0.3674 0.6224 0

OHI 2v 0.1694 0.1738 0.1224 0.1224 0.9592

fl 0.0494 0.0536 0 0.2143 0
st 0.0353 0.0383 0.1632 0.0307 0
3v 0.0024 0.0026 0 0 0.0408
sfl 0.0024 0.0026 0 0.0102 0

P(OHO). The states are (no,  a, 2 cons, 2 s, 2v, fl, s, 3 v, sfl).
Through various (approximated) combinatorial calculations the prior probability

distribution is found to be
P(OH0) = (0.1672,0.0445,0.0635,0.4659, 0.1694, 0.0494, 0.0353, 0.0024, 0.0024)

P(OHI | OHO,FC). Due to the logical links between OHO and FC it is sufficient
to consider only nine out of the possible 36 parent configurations, namely
(no, 3), (1 a, 2),(2cons, 1), (2s,1),(2v, 1), (A, 0). (s, 0),(3v, 0)
(sfi, 0). The last four are obvious. In Table 3.4 the results of approximate combina-
torial calculations are given.

The probabilities for the remaining parent configurations may be whatever conve-
nient. So, put, for example, P(OHI |3 v, 1) = (1, 0,0,0,0,0,0,0,0).

P(OH2 | OH1, SC). First a table P(OH2' | OHI, SC) similar (but not identical in
the numbers) to Table 3.4 can be calculated. However, the states of OH2' are not the
ones we are interested in. We are interested in the value of the hand and a state like
2 cons is of no value unless one of them is an ace. Therefore, the probabilities for
the states of QH?2' are transformed to probabilities for OH2. For the transformation,

the following rules are used:

1
Ia=1a+6(2cons+23)

5
no =no -+ —6-(2 cons + 2 5).

The probabilities of 2 a are calculated specifically. The resulting probabilities are
given in Table 3.5.

Using a model like the one in Figure 3.3 and with the conditional probability
tables specified in this section, we have established a model for assisting a (novice)
poker player. However, if my opponent knows that I use the system he may choose
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Table 3.5 P(OH2 | OHI, SC) for the non-obvious configurations.

(OH1, Sc)
': (no,2) (Ia 2) Qcons,I) (251) @Cv, 1)
. no 05613 0 0.5503 05121 0
b Ia 01570 07183 0.1181 0.1024 0
R 2v  0.1757 0.0667 0.1154 0.1154  0.8838
OH2 2a 00055 0.1145 0.0096 0.0096  0.0736
E A 00559 00559 0 02188 0
st 00392 00392 0.1666 00313 0
3v 00027 00027 O 0 0.0426
A s 00027 00027 O 0.0104 0

to change his strategies. His goal is to win rather than to obtain good hands, and he
¥ therefore may choose a strategy that makes me overestimate his hand. For instance,
- it seems a good strategy to discard two cards instead of three in the case of no.
I will be convinced that he has an ace, and his chances for a good hand are not
substantially reduced. We will return to this point in Chapter 6 on decision making;/j}

. 3.2.3 Transmission of symbol strings

A language L over 2 symbols (a, b) is transmitted through a channel.
Each word is surrounded by the delimiter symbol c. In the transmission
o some characters may be corrupted by noise and be confused with others.

A five-letter word is transmitted. Give a model which can determine the
probabilities for the transmitted symbols given the received symbols.

ot There are five hypothesis variables 77, ..., T5 with states @ and b and five infor-
' mation variables R;,..., Rs with states a, b, c. Besides, mediating variables for
the delimiters before and after the word may be considered. There is a causal

relation from 7; to R;. Furthermore, there may also be a relation from 7; to

T;r(i = 1,...,4). You could also consider more involved relations from pairs

of symbols to symbols, but for now we refrain from that. The structure is given in

Figure 3.11.
OaOaOaOn0
B ®® ® ®

Figure 3.11 A model for symbol transmission. 7; are the
symbols transmitted, R; are the symbols received.

The conditional probabilities can be established through experience. The proba-



